Primary Author: Ana Tellechea
J Invest Dermatol. 2020 Apr;140(4):901-911.e11. doi: 10.1016/j.jid.2019.08.449. Epub 2019 Sep 27.
ABSTRACT
Impaired wound healing in the diabetic foot is a major problem often leading to amputation. Mast cells have been shown to regulate wound healing in diabetes. We developed an indole-carboxamide type mast cell stabilizer, MCS-01, which proved to be an effective mast cell degranulation inhibitor in vitro and can be delivered topically for prolonged periods through controlled release by specifically designed alginate bandages. In diabetic mice, both pre- and post-wounding, topical MCS-01 application accelerated wound healing comparable to that achieved with systemic mast cell stabilization. Moreover, MCS-01 altered the macrophage phenotype, promoting classically activated polarization. Bulk transcriptome analysis from wounds treated with MCS-01 or placebo showed that MCS-01 significantly modulated the mRNA and microRNA profile of diabetic wounds, stimulated upregulation of pathways linked to acute inflammation and immune cell migration, and activated the NF-κB complex along with other master regulators of inflammation. Single-cell RNA sequencing analysis of 6,154 cells from wounded and unwounded mouse skin revealed that MCS-01 primarily altered the gene expression of mast cells, monocytes, and keratinocytes. Taken together, these findings offer insights into the process of diabetic wound healing and suggest topical mast cell stabilization as a potentially successful treatment for diabetic foot ulceration.
PMID:31568772 | DOI:10.1016/j.jid.2019.08.449