Publications

August 23, 2024

Less-deformable erythrocyte subpopulations biomechanically induce endothelial inflammation in sickle cell disease

Sickle cell disease (SCD) is canonically characterized by reduced red blood cell (RBC) deformability, leading to microvascular obstruction and inflammation. Although the biophysical properties of sickle RBCs are known to influence SCD vasculopathy, the contribution of poor RBC deformability to endothelial dysfunction has yet to be fully explored. Leveraging interrelated in vitro and in silico approaches, we introduce a new paradigm of SCD vasculopathy in which poorly deformable sickle RBCs...
August 10, 2024

Single-cell Analysis of Debrided Diabetic Foot Ulcers Reveals Dysregulated Wound Healing Environment in non-Hispanic Blacks

Diabetic foot ulcer (DFU) is a critical complication of diabetes, but the wound microenvironment and its healing process are not completely understood. In this study, we optimized single-cell profiling from sharp debrided ulcers. Our findings demonstrate that healing-DFUs were significantly enriched with distinct fibroblasts expressing genes related to inflammation (CHI3L1, IL6) and extracellular matrix remodeling (ASPN), validating our previous studies on surgically resected ulcers. The...
July 9, 2024

Medulloblastoma Spatial Transcriptomics Reveals Tumor Microenvironment Heterogeneity with High-Density Progenitor Cell Regions Correlating with High-Risk Disease

The tumor microenvironment (TME) of medulloblastoma (MB) influences progression and therapy response, presenting a promising target for therapeutic advances. Prior single-cell analyses have characterized the cellular components of the TME but lack spatial context. To address this, we performed spatial transcriptomic sequencing on sixteen pediatric MB samples obtained at diagnosis, including two matched diagnosis-relapse pairs. Our analyses revealed inter- and intra-tumoral heterogeneity within...
May 29, 2024

Early Injury Landscape in Vein Harvest by Single-Cell and Spatial Transcriptomics

CONCLUSIONS: Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents...